[86.03/66.25] Dispositivos Semiconductores 1er Cuatrimestre 2020

Juntura MOS

1. Identificación de materiales y valor de parámetros eléctricos

- 2. Distribución de carga para distintos regímenes
- 3. Curva Capacidad-Tensión

Para una estructura MOS con poly-silicio tipo N, N_{Bulk} = 10¹⁷ cm⁻³, V_{T} = 0.547 V,

 γ^2 = 0.545 V y C'_{ox} = 2.46 10⁻⁷ F/cm², considerando que está polarizado con: V_{GB} ∈ {-2V, V_{FB}, 0, V_T, 2V}

hallar

- 1. Las caídas de potencial en el óxido y en el SC, ΔV_{OX} , ΔV_{Bulk}
- 2. La carga por unidad de superficie en la interfaz poly-óxido Q'_{Poly-Ox}
- 3. La capacidad por unidad de área C'_{GB}

Del ejercicio anterior sabemos que el substrato es tipo P y los valores de V_{FR} y ϕ_{R}

Datos

 $V_{\tau} = 0.547 V$

 $C'_{0x} = 246 \text{ nF/cm}^2$

 $V_{_{\rm FR}} = -\phi_{_{\rm R}} = -0.97 \, \text{V}$

Para una estructura MOS con poly-silicio tipo N, N_{Bulk} = 10^{17} cm⁻³, V_T = 0.547 V,

 $\gamma^2 = 0.545 \text{ V y C'}_{ox} = 2.46 \text{ 10}^{-7} \text{ F/cm}^2$, considerando que está polarizado con: $V_{GB} \in \{-2V, V_{FB}, 0, V_{T}, 2V\}$ Poly-N y Subs. P $N_{Bulk} = 10^{17} \text{ cm}^{-3}$

hallar

- Las caídas de potencial en el óxido y en el SC, ΔV_{OX} , ΔV_{Bulk} 1.
- La carga por unidad de superficie en la interfaz poly-óxido Q'_{Poly-Ox} 2.
- La capacidad por unidad de área C'_{GR} 3.

Se resuelve en el siguiente video

<u>Resultados</u>							
V _{GB}	-2	V _{FB}	0	V _T	2		
Q' _{p-o}							
ΔV _{ox}							
ΔV _{Bu}							

Para resolver el enunciado debemos completar una tabla de este estilo

Vaciamiento (en este caso Eq. Térmico)

<u>Resultados</u>							
V _{GB}	-2	V _{FB}	0	V _T	2		
Q' _{p-o}							
ΔV _{ox}							
ΔV _{Bu}							

1

Vaciamiento (en este caso Eq. Térmico)

<u>Resultados</u>							
V _{GB}	-2	V _{FB}	0	V _T	2		
Q' _{o-s}			125 nC/cm ²				
ΔV _{ox}			506 mV				
ΔV _{Bu}			464 mV				

Banda Plana

<u>Re</u> sultados							
V _{GB}	-2	V _{FB}	0	V _T	2		
Q' _{o-s}			125 nC/cm ²				
ΔV _{ox}			506 mV				
ΔV _{Bu}			464 mV				

2

Banda Plana

<u>Re</u> sultados							
V _{GB}	-2	V _{FB}	0	V _T	2		
Q' _{p-o}		0	125 nC/cm ²				
ΔV _{ox}		0	506 mV				
ΔV _{Bu}		0	464 mV				

Acumulación

<u>Resultados</u>						
V _{GB}	-2	V _{FB}	0	V _T	2	
Q' _{p-o}		0	125 nC/cm ²			
ΔV _{ox}		0	506 mV			
∆V _{Bu}		0	464 mV			

3

Acumulación

Resultados						
V _{GB}	-2	V _{FB}	0	V _T	2	
Q' _{o-s}	-253 nC/cm ²	0	125 nC/cm ²			
ΔV _{ox}	1.03 V	0	506 mV			
ΔV _{Bu}	0	0	464 mV			

Umbral

<u>Resultados</u>					
V _{GB}	-2	V _{FB}	0	V _T	2
Q' _{o-s}	-253 nC/cm ²	0	125 nC/cm ²		
ΔV _{ox}	1.03 V	0	506 mV		
ΔV _{Bu}	0	0	464 mV		

4

Umbral

<u>Resultados</u>					
V _{GB}	-2	V _{FB}	0	V _T	2
Q' _{o-s}	-253 nC/cm ²	0	125 nC/cm ²	166 nC/cm ²	
ΔV _{ox}	1.03 V	0	506 mV	677 mV	
ΔV _{Bu}	0	0	464 mV	840 mV	

Inversión

<u>Resultados</u>						
V _{GB}	-2	V _{FB}	0	V _T	2	
Q' _{o-s}	-253 nC/cm ²	0	125 nC/cm ²	166 nC/cm ²		
ΔV _{ox}	1.03 V	0	506 mV	677 mV		
ΔV _{Bu}	0	0	464 mV	840 mV		

5

<u>Resultados</u>				
-2	V _{FB}	0	V _T	2
-253 nC/cm ²	0	125 nC/cm ²	166 nC/cm ²	524 nC/cm ²
1.03 V	0	506 mV	677 mV	2.13 V
0	0	464 mV	840 mV	840 mV
	-2 -253 nC/cm ² 1.03 V 0	Less Less <thless< th=""> Less Less <th< th=""><th>FB E -2 V_{FB} 0 -253 nC/cm² 0 125 nC/cm² 1.03 V 0 506 mV 0 0 464 mV</th><th>Resultados -2 V_{FB} 0 V_T -253 nC/cm² 0 125 nC/cm² 166 nC/cm² 1.03 V 0 506 mV 677 mV 0 0 464 mV 840 mV</th></th<></thless<>	FB E -2 V _{FB} 0 -253 nC/cm ² 0 125 nC/cm ² 1.03 V 0 506 mV 0 0 464 mV	Resultados -2 V _{FB} 0 V _T -253 nC/cm ² 0 125 nC/cm ² 166 nC/cm ² 1.03 V 0 506 mV 677 mV 0 0 464 mV 840 mV

Todos los casos juntos

